O ESTADO GRACELI - SÃO TODOS AQUELES QUE SE ENCONTRAM EM CONDIÇÕES DO OPERADOR DE ANCELMO GRACELI. 



dentro da sua mecânica e com  o operador  multidimensional de GRACELI   ¨*  ¨se tem a indeterminalidade quântica generalizada de Graceli



TRANSCENDENTE É A QUELE QUE SE ENCONTRA EM CONSTANTE E VARIADA TRANSFORMAÇÃO.


O INTERATIVO É AQUELE QUE SE ENCONTRA EM INTERAÇÕES DE ENERGIAS, MOMENTUNS, MAGNETISMO, ELETROMAGNETISMO, SPIN-ÓRBITA, E OUTROS.


O RELATIVO É AQUELE QUE VAI DEPENDER DE CONDIÇÕES DOS OBSERVADORES EM RELAÇÃO AO FENÔMENO, E OUTROS, E VARIAÇÕES DOS FENÔMENOS E ENERGIAS.


O INDETERMINADO É AQUELE QUE SE ENCONTRA EM SITUAÇÃO DE INFINITESIMAL.




MECÂNICA GRACELI GENERALIZADA multidimensional - relativista indeterminada


dentro da sua mecânica e com  o operador  multidimensional de GRACELI   ¨*  ¨se tem a indeterminalidade quântica generalizada de Graceli



 

  MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.


DE  ANCELMO LUIZ GRACELI  [BRASILEIRO].



FÍSICA GRACELI DIMENSIONAL. [dimensionismo indeterminado Graceli].




  MECÃNICA GRACELI GERAL - QTDRC.




equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS FÍSICOS, TIPOS E CARACTERITÍCAS, E POTENCIAIS FÍSICOS DAS ESTRUTURAS, DOS ELEMENTOS QUÍMICOS, ENERGIAS E NÍVEIS DE ENERGIAS, POTENCIAIS DE INTERAÇÕES , CONDUÇÕES, EMISSÕES, DESINTEGRAÇÕES, ABSORÇÕES, E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS DE FASES E INTERMEDIÁRIOS DE TEMPERATURA, ELETROMAGNETISMO,  ENTROPIA, VIBRAÇÕES. E OUTROS.

LEVANDO E UM  SISTEMA DE FASES ÍNFIMAS, TEMOS UM SISTEMA DIMENSIONAL INDETERMINADO.

   *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.

CONFORME  A TEORIA DE GRACELI DO AFASTAMENTO DOS PLANETAS E SATÉLITES, A TERRA DO AMANHÂ SERÁ O MARTE DE  HOJE, E QUE  FOI O VÊNUS DE HOJE, O MESMO SERVE PARA MARTE DE ONTEM. ISTO EXPLICA PORQUE SE TEM MARCAS DE RIOS EM MARTE.


ψ     [   ]    .


*  .

ψ   .


                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,


  = temperatura.









ψ     [ / ]   /]

  ) [,] / [    ]     .


ψ     [ / ]   /[]

  ) [,] / [    ]     .




ψ        / [ [ []  ] ]    .


Partículas elementares, tais como os fótons, elétrons e os quarks, são partículas que não podem ser divididas em partes menores. Teorias e estudos experimentais têm mostrado que o spin, presente nessas partículas, não pode ser explicado por postulações clássicas, onde partículas menores tendem a orbitar em volta de um centro de massa. O spin que essas partículas apresentam é uma propriedade física intrínseca, como a propriedade de carga elétrica e massa. Na mecânica quântica, o momento angular de qualquer sistema é expresso pela equação abaixo:

Onde  é a constante de Planck reduzida , e o número quântico do spin s é uma fração na forma  , onde n pode ser qualquer número inteiro não-negativo. Assim, s pode assumir os valores 0, , 1, , 2, etc. A fração do número quântico é a maior diferença entre o momento angular orbital do spin. O valor de s depende unicamente do tipo de partícula, não podendo ser alterada de forma alguma, ao contrário da direção do spin.





   / ]]   ) [[ ][]

ψ] ]  .



 ψ   / [ [ ] []

 ] ψ] /    .





ψ    ) [[ ][ ]

ψ] .   . 






ψ         []] [ ][,] ]   .,


Na mecânica quântica, o teorema de Hellmann – Feynman relaciona a derivada da energia total em relação a um parâmetro, ao valor esperado da derivada do Hamiltoniano em relação a esse mesmo parâmetro. De acordo com o teorema, uma vez que a distribuição espacial dos elétrons tenha sido determinada resolvendo a equação de Schrödinger, todas as forças no sistema podem ser calculadas usando a eletrostática clássica .

O teorema foi provado de forma independente por muitos autores, incluindo Paul Güttinger (1932),[1] Wolfgang Pauli (1933),[2] Hans Hellmann (1937) [3] e Richard Feynman (1939).[4]

O teorema afirma

Onde

  •  é um operador hamiltoniano, dependendo de um parâmetro contínuo  ,
  • , é um estado próprio (auto função) do Hamiltoniano, dependendo implicitamente de  ,
  •  é a energia (autovalor) do estado , ie  .


Note que há uma quebra do teorema de Hellmann-Feynman próximo a pontos críticos quânticos no limite termodinâmico.[5]




 ψ        [ [ ]]

 
ψ]]   .




ψ       / [ 

[ ]] ]    .






ψ   / [ [ ]]

ψ] /     .




*  [ ]]

ψ[ 
] / ] ]] .


teorema de Ehrenfest, nomeado a partir de Paul Ehrenfest, físico e matemático austríaco, relaciona a derivada do tempo do valor esperado para um operador na mecânica quântica para o comutador deste operador com o hamiltoniano do sistema. Isto é:

onde A é algum operador da mecânica quântica e  é seu valor esperado.

O Teorema de Ehrenfest é obviamente a Representação de Heisenberg da mecânica quântica, onde isto é apenas o valor esperado do momento da Equação de Heisenberg.

O teorema também é altamente relacionado com o Teorema de Liouville da mecânica hamiltoniana, que envolve os Parênteses de Poisson ao invés do comutador.






    [[ ]]/

] [
]ψ]] .





ψ [[ ]]

 ]..,]ψ]/ ]  .










  / [ [ ]]

.]ψ ]  .




ψ      [  [ ] []

  ψ ] / ]    .






ψ     []

] /      [[ ]]     .






ψ  [[[ ]]  ) [

ψ []










ψ     [ [[ ]]

  ) []] /  ψ     .



   [[ ]] /   ) / [].

, ] / ψ   .

magnetão de Bohr, referido em alguns textos como magneton de Bohr, (símbolo ) é uma constante física relacionada com o momento magnético que recebe seu nome do físico Niels Bohr. Pode ser expresso em térmos de outras constantes elementares como:

onde:

 é a carga elementar,
 é a constante de Planck reduzida,
 é a massa em repouso do elétron

No sistema internacional de unidades se valor é aproximadamente:

 = 9,274 008 99(37)·10-24 J·T-1

No sistema CGS de unidades seu valor é aproximadamente:

 = 9,274 008 99(37)·10-21 erg·G-1




  •  é a massa da partícula.
  •  é a carga da partícula.
  •  é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
  •  é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são: 
  •  é o vetor de três componentes do potencial magnético.
  •  é o potencial escalar elétrico.

[ ]

 

Na físicateoria de campo de Liouville, ou simplesmente (teoria de Liouville) é uma teoria quântica de campos bidimensional cuja equação clássica de movimento se assemelha a equação diferencial não-linear de segunda ordem de Joseph Liouville a que aparece no problema geométrico clássico de uniformização de superfícies de Riemann.

A teoria de campo é definida pela ação local:

onde  é a métrica do espaço bidimensional em que a teoria de campo é formulada,  é o escalar Ricci de tal espaço, e  é um acoplamento constante real. O campo  é consequentemente chamado de campo Liouville.

A equação de movimento associado a esta ação é ::

onde  é o operador de d'Alembert nesse espaço. No caso, a métrica do espaço sendo a métrica Euclidiana e utilizando a notação padrão, torna-se a equação clássica de Liouville.

Comentários